63 research outputs found

    Higher-loop anomalies in chiral gravities

    Get PDF
    The one-loop anomalies for chiral W3W_{3} gravity are derived using the Fujikawa regularisation method. The expected two-loop anomalies are then obtained by imposing the Wess-Zumino consistency conditions on the one-loop results. The anomalies found in this way agree with those already known from explicit Feynman diagram calculations. We then directly verify that the order 2\hbar^2 non-local BRST Ward identity anomalies, arising from the ``dressing'' of the one-loop results, satisfy Lam's theorem. It is also shown that in a rigorous calculation of Q2Q^2 anomaly for the BRST charge, one recovers both the non-local as well as the local anomalies. We further verify that, in chiral gravities, the non-local anomalies in the BRST Ward identity can be obtained by the application of the anomalous operator Q2Q^2, calculated using operator products, to an appropriately defined gauge fermion. Finally, we give arguments to show why this relation should hold generally in reparametrisation-invariant theories.Comment: 21 pages, latex, 12 figures as uuencoded postscript. To appear in Nucl. Phys.

    Effects of cold dark matter decoupling and pair annihilation on cosmological perturbations

    Full text link
    Weakly interacting massive particles are part of the lepton-photon plasma in the early universe until kinetic decoupling, after which time the particles behave like a collisionless gas with nonzero temperature. The Boltzmann equation for WIMP-lepton collisions is reduced to a Fokker-Planck equation for the evolution of the WIMP distribution including scalar density perturbations. This equation and the Einstein and fluid equations for the plasma are solved numerically including the acoustic oscillations of the plasma before and during kinetic decoupling, the frictional damping occurring during kinetic decoupling, and the free-streaming damping occurring afterwards and throughout the radiation-dominated era. An excellent approximation reduces the solution to quadratures for the cold dark matter density and velocity perturbations. The subsequent evolution is followed through electron pair annihilation and the radiation-matter transition; analytic solutions are provided for both large and small scales. For a 100 GeV WIMP with bino-type interactions, kinetic decoupling occurs at a temperature Td=23T_d=23 MeV. The transfer function in the matter-dominated era leads to an abundance of small cold dark matter halos; with a smooth window function the Press-Schechter mass distribution is dn/dlnMM1/3dn/d\ln M\propto M^{-1/3} for M<104(Td/M<10^{-4} (T_d/10 MeV)3^{-3} M_\odot.Comment: 18 pages, 12 figures; corrected error in bino decoupling temperature, figures update

    High redshift radio galaxies and divergence from the CMB dipole

    Full text link
    Previous studies have found our velocity in the rest frame of radio galaxies at high redshift to be substantially larger than that inferred from the CMB temperature dipole anisotropy. We construct a full sky catalogue NVSUMSS, by merging the NVSS and SUMSS catalogues and removing local sources by various means including cross-correlating with the 2MRS catalogue. We take into account both aberration and Doppler boost to deduce our velocity from the hemispherical number count asymmetry, as well as via a 3-dimensional linear estimator. Both the magnitude and direction depend on cuts made to the catalogue, e.g. on the lowest source flux, however these effects are small. With the hemispheric number count asymmetry method we obtain a velocity of 1729 ±\pm 187 km/s i.e. about 4 times larger than that obtained from the CMB dipole, but close in direction, towards RA=149 ±\pm 2 degree, DEC = -17 ±\pm 12 degree. With the 3-dimensional estimator, the derived velocity is 1355 ±\pm 174 km/s towards RA=141 ±\pm 11 degree, DEC=-9 ±\pm 10 degree. We assess the statistical significance of these results by constructing catalogues of random distributions and show that they are at best significant at the 2.81σ2.81 \sigma (99.95% confidence) level.Comment: 13 pages, 12 figures, 10 tables; matches published versio

    Gravitational Clustering to All Perturbative Orders

    Get PDF
    We derive the time evolution of the density contrast to all orders of perturbation theory, by solving the Einstein equation for scale-invariant fluctuations. These fluctuations are represented by an infinite series in inverse powers of the radial parameter. In addition to the standard growing modes, we find infinitely many more new growing modes for open and closed universes

    Reconstruction of primordial density fields

    Full text link
    The Monge-Ampere-Kantorovich (MAK) reconstruction is tested against cosmological N-body simulations. Using only the present mass distribution sampled with particles, and the assumption of homogeneity of the primordial distribution, MAK recovers for each particle the non-linear displacement field between its present position and its Lagrangian position on a primordial uniform grid. To test the method, we examine a standard LCDM N-body simulation with Gaussian initial conditions and 6 models with non-Gaussian initial conditions: a chi-squared model, a model with primordial voids and four weakly non-Gaussian models. Our extensive analyses of the Gaussian simulation show that the level of accuracy of the reconstruction of the nonlinear displacement field achieved by MAK is unprecedented, at scales as small as about 3 Mpc. In particular, it captures in a nontrivial way the nonlinear contribution from gravitational instability, well beyond the Zel'dovich approximation. This is also confirmed by our analyses of the non-Gaussian samples. Applying the spherical collapse model to the probability distribution function of the divergence of the displacement field, we also show that from a well-reconstructed displacement field, such as that given by MAK, it is possible to accurately disentangle dynamical contributions induced by gravitational clustering from possible initial non-Gaussianities, allowing one to efficiently test the non-Gaussian nature of the primordial fluctuations. In addition, a simple application of MAK using the Zel'dovich approximation allows one to also recover accurately the present-day peculiar velocity field on scales of about 8 Mpc.Comment: Version to appear in MNRAS, 24 pages, 21 figures appearing (uses 35 figure files), 1 tabl

    The Cosmological Mean Density and its Local Variations Probed by Peculiar Velocities

    Full text link
    Peculiar velocities thoughout the region of the local supercluster are reconstructed by two different orbit-retracing methods. The requirement of the optimal correlation between the radial components of reconstructed velocities and the observed peculiar velocities derived from our extensive new catalog of distances puts stringent constraints on the values of the cosmological parameters. Our constraints intersect those from studies of microwave background fluctuations and statistical properties of galaxy clustering: the ensemble of constraints are consistent with Omega_m=0.22\pm 0.02. While motions throughout the Local Supercluster provide a measure of the mean ratio of mass to light, there can be large local fluctuations. Our reconstruction of the infall velocities in the immediate vicinity of the Virgo Cluster shows that there is a mass-to-light anomaly of a factor of 3 to 6 between groups in the general field environment and the heavily populated Virgo Cluster.Comment: 4 pages, 2 figures, version to appear in Astrophysical Journal Letter

    Observational biases in Lagrangian reconstructions of cosmic velocity fields

    Full text link
    Lagrangian reconstruction of large-scale peculiar velocity fields can be strongly affected by observational biases. We develop a thorough analysis of these systematic effects by relying on specially selected mock catalogues. For the purpose of this paper, we use the MAK reconstruction method, although any other Lagrangian reconstruction method should be sensitive to the same problems. We extensively study the uncertainty in the mass-to-light assignment due to luminosity incompleteness, and the poorly-determined relation between mass and luminosity. The impact of redshift distortion corrections is analyzed in the context of MAK and we check the importance of edge and finite-volume effects on the reconstructed velocities. Using three mock catalogues with different average densities, we also study the effect of cosmic variance. In particular, one of them presents the same global features as found in observational catalogues that extend to 80 Mpc/h scales. We give recipes, checked using the aforementioned mock catalogues, to handle these particular observational effects, after having introduced them into the mock catalogues so as to quantitatively mimic the most densely sampled currently available galaxy catalogue of the nearby universe. Once biases have been taken care of, the typical resulting error in reconstructed velocities is typically about a quarter of the overall velocity dispersion, and without significant bias. We finally model our reconstruction errors to propose an improved Bayesian approach to measure Omega_m in an unbiased way by comparing the reconstructed velocities to the measured ones in distance space, even though they may be plagued by large errors. We show that, in the context of observational data, a nearly unbiased estimator of Omega_m may be built using MAK reconstruction.Comment: 29 pages, 21 figures, 6 tables, Accepted by MNRAS on 2007 October 2. Received 2007 September 30; in original form 2007 July 2
    corecore